• Latest
  • Trending
Accelerating the Power of AI with Neural Networks

Accelerating the Power of AI with Neural Networks

September 30, 2021
Just-In: Ethereum Merge Most Likely In August, Says Vitalik Buterin

Just-In: Ethereum Merge Most Likely In August, Says Vitalik Buterin

May 20, 2022
Trader Predicts Crypto Market Will Mimic 2018 Bear Season – Here’s How High Bitcoin Could Go Before Nuking Lower

Trader Predicts Crypto Market Will Mimic 2018 Bear Season – Here’s How High Bitcoin Could Go Before Nuking Lower

May 20, 2022
Terraform Labs, Luna Foundation Guard Bought 3.06m AVAX in total: Avalanche Foundation

Terraform Labs, Luna Foundation Guard Bought 3.06m AVAX in total: Avalanche Foundation

May 20, 2022

TD SYNNEX expands solution offering with Google Cloud

May 20, 2022

Creating an ML Web App and Deploying it on AWS

May 20, 2022
Will Fan Tokens Replace Memecoins Like Shiba Inu and Dogecoin?

Will Fan Tokens Replace Memecoins Like Shiba Inu and Dogecoin?

May 20, 2022
Goldman Sachs: Crypto Drawdown Will Have Little Impact on U.S. Economy

Goldman Sachs: Crypto Drawdown Will Have Little Impact on U.S. Economy

May 20, 2022
Crypto Bear Market: Pantera Partner Sees These Buying Opportunities

Crypto Bear Market: Pantera Partner Sees These Buying Opportunities

May 20, 2022
Australias Commonwealth Bank Halts Crypto Rollout

Australias Commonwealth Bank Halts Crypto Rollout

May 20, 2022
Commonwealth Bank puts crypto trading trial on ice as regulators dither

Commonwealth Bank puts crypto trading trial on ice as regulators dither

May 20, 2022
Ethereum devs tip The Merge will occur in August ‘if everything goes to plan’

Ethereum devs tip The Merge will occur in August ‘if everything goes to plan’

May 20, 2022
Beware, Bitcoin Jumping Back Above $30,000 Could Be A Dead Cat Bounce, Here’s why

Beware, Bitcoin Jumping Back Above $30,000 Could Be A Dead Cat Bounce, Here’s why

May 20, 2022
Deep Tech Central
Tuesday, June 28, 2022
Subscription
Sign Up
  • News
    • Artificial Intelligence
    • Crypto
    • CyberSecurity
    • IoT
    • Robotics
    • Quantum Computing
    • Sustainability
    • Telecom
  • Videos
  • DTC – UNV
No Result
View All Result
Deeptech Central
No Result
View All Result

Accelerating the Power of AI with Neural Networks

by DeepTech Central
September 30, 2021
in Artificial Intelligence
0

By Bob Friday, cofounder and CTO, Mist Systems

Artificial Intelligence, Machine Learning and Neural Networks Defined

YOU MAY ALSO LIKE

Creating an ML Web App and Deploying it on AWS

Now You Don’t Need To Present Your Credit Card At Checkout If You Bind Your Facial Images/ Hand Features To Your MasterCard Credit Card

Using the Turing Test as a qualifier, Artificial Intelligence (AI) is defined as a software solution that performs a task on par with a human domain expert. When IBM’s Watson system played Jeopardy with former Jeopardy champions, much of the world saw the first real example of AI. Now, deep learning is enabling solutions that can interpret MRI images on par with doctors and operate buses on par with human drivers (e.g. Las Vegas Self Driving Shuttle).  

Bob Friday, cofounder and CTO, Mist Systems

Machine Learning (ML) is the basic foundation of AI comprised of the algorithms and data sets used to build an AI solution. In order to create a true AI system that can pass the Turing Test, the ML subset must be constantly improving with new sets of data and ongoing developments to the algorithms. While there are many different algorithms that have been in the ML toolbox for decades, it is only recently (circa. 2014) that the deep learning and neural network algorithms have taken a significant leap forward in performance due to the availability of large-labeled data sets for training and low-cost compute and storage.

Neural Networks are Accelerating Machine Learning

Thanks to the fast improvement of computation, storage and distributed computing infrastructure, ML has been evolving into more complex structured models like Deep Learning (DL), Generative Adversarial Network (GAN) and Reinforcement Learning (RL) – all using neural networks. Supervised neural networks are algorithms that can differentiate and make judgements based on image or pattern recognition, after being trained with labeled data. The concept of neural networks has been around for more than forty years, however, it was near 2014 that deep learning and neural networks began to disrupt different segments and bring us closer to passing the Turing Test. Thanks to today’s data gathering capabilities, and sheer volume of said data, neural networking is one of the driving trends in successful ML execution.

Deep learning refers to a set of artificial neural network-based ML models that mimic the working mechanisms of neurons and the nerve network of the human brain. There are two kinds of popular neural network models: the Convolutional Neural Network (CNN) model, which is widely used in different image related applications like autonomous driving, robot, image search, etc., and the Recurrent Neural Network (RNN) model, which is empowering most of the Natural Language Processing-based (NLP) text or voice applications, such as chatbots, virtual home and office assistants and simultaneous interpreters.

Generative Adversarial Network (GAN) is a type of ML technique composed of two deep neural networks competing with each other in a zero-sum game framework. GAN runs typically in the unsupervised fashion; thus, it can help reduce the dependency of deep learning models on the amount of labeled training data.

NLP is another algorithmic trend that is driving ML advancement, particularly in the area of virtual home and office assistants. Similarly to neural networks, NLP is algorithmic based vocal- and word-based recognition. As more AI companies adopt these trends and execute on top of their ML foundation, they will be successful.

Key Considerations in Building an AI System

A solid data pipeline and a great data science toolbox are key to building an effective AI-driven system. We’ve only recently gained access to nearly unlimited compute power and storage in the cloud, which has, in turn, allowed for incredible data collection and analysis. With the right volume and quality of data, as well as the nurturing of data science programs, ML will advance quickly and bring companies closer to achieving true AI.

Almost any college graduate can build and train a deep learning model using tools such Python, TensorFlow and Keras. To bring an AI solution to production, you need tools such as Spark, Kubernetes and Docker to allow the collection and creation of large labeled datasets and data pipelines  

There are many open source tools, like TensorFlow, Keras, and Mllib, which dramatically reduce the effort and knowledge required of building a ML – even DL – model, but bringing a solution to production requires the whole ecosystem of AI primitives, including data acquisition and labelling, data processing pipeline, model execution, post deployment validation and continuous model improvement.

In addition, there are other factors determining the success of an AI solution. These include how to leverage and integrate human knowledge and heuristics while developing machine intelligence; how to build human trust in the step-by-step process of automation, augmentation and autonomy; and how to accelerate knowledge learning and sharing across different customers without compromising individuals’ privacy information.

Real-World Use Case for Neural Networks and ML

As virtual home assistants have become commonplace across America, virtual assistants for the enterprise are gaining traction as a prime use case for the predictive capabilities of neural networks and ML algorithms. For example, Dartmouth College, an Ivy League university, has implemented an AI-driven virtual network assistant, Marvis, which provides insight into Wireless LAN (WLAN) behavior and offers expert guidance for rapid Wi-Fi troubleshooting.

Marvis uses NLP to provide Dartmouth’s network administrators with answers to questions such as, “How are the Wi-Fi access points in Baker-Berry Library performing?” With each question posed, the assistant leverages its neural network and becomes more accurate and more confident over time, improving the ML data set and resulting insights. Dartmouth is also leveraging an AI-driven RF planning system that automatically learns and optimizes the Wi-Fi channel and power settings by leveraging reinforcement learning with the reward being improved user experience on the network that drives the learning algorithms.

We are seeing the convergence of several different technologies such as compute, storage and large data sets that are enabling AI, disrupting segments in our society involving images, voice, healthcare and automotive with real world implementations.  As adoption continues, and AI becomes more advanced, we will see further developments in AI that, ultimately, disrupt our daily lives.

Learn more at Mist Systems

Share196Tweet123Share49

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

I agree to the Terms & Conditions and Privacy Policy.

Search

No Result
View All Result

Recent News

  • Just-In: Ethereum Merge Most Likely In August, Says Vitalik Buterin
  • Trader Predicts Crypto Market Will Mimic 2018 Bear Season – Here’s How High Bitcoin Could Go Before Nuking Lower
  • Terraform Labs, Luna Foundation Guard Bought 3.06m AVAX in total: Avalanche Foundation
  • About
  • Privacy Policy
  • Sign Up
  • Contact Us
  • About
  • Contact
  • Deeptech Central
  • Elementor #10628
  • Newsletter
  • Privacy Policy
  • Sign Up

© 2018-2021 DeepTech Central. - by MintMore Inc..

No Result
View All Result
  • News
    • Artificial Intelligence
    • Crypto
    • CyberSecurity
    • IoT
    • Robotics
    • Quantum Computing
    • Sustainability
    • Telecom
  • Videos
  • DTC – UNV

© 2018-2021 DeepTech Central. - by MintMore Inc..

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.

Stay Updated. Subscribe Today.

Join the community of 10K+ scholars & entrepreneurs.